Tesis doctoral
Bioinformática
IF: 0
TBD

Desarrollo de técnicas de aumento de datos para la aplicación de aprendizaje profundo en problemas de bioinformática

Autor: Francisco J. Moreno-Barea | Directores: Leonardo Franco (dir.), José M. Jerez (codir.)

Universidad de Málaga - Programa de Doctorado en Tecnologías Informáticas2023Vol.
0
Citas
0
Visualizaciones
N/A
Descargas
N/A
Altmetric Score
18/1/2023
Publicado
Resumen

En la última década, el aprendizaje profundo (DL) se ha impuesto como el enfoque de inteligencia artificial con mayor progresión y éxito. El DL conforma el estado del arte en visión por computador y procesamiento del lenguaje natural, mostrando además un potencial prometedor en bioinformática, un campo de gran impacto económico y social. Sin embargo, estos modelos presentan una importante desventaja, requieren de miles de instancias de datos para lograr un buen nivel de éxito. Actualmente en bioinformática, la adquisición de datos sigue siendo un proceso difícil y costoso, especialmente trabajando con conjuntos genómicos, expresión molecular o metabolómica. Estos son significativamente difíciles de obtener, y su escasez es acuciante en estudios de enfermedades raras o regiones geográficas concretas. Para resolver esta limitación se puede emplear el aumento de datos (DA), el incremento del número de muestras disponibles mediante transformaciones o generación. En los últimos años, modelos de DA pertenecientes al DL han obtenido un rendimiento asombroso en generación de imágenes sintéticas. Sin embargo, aplicar estos modelos a conjuntos bioinformáticos sin información espacial o temporal es desafiante. A este respecto, el objetivo de la tesis doctoral es el desarrollo de métodos de DA y su aplicación en problemas bioinformáticos no estructurados. Se desarrollaron métodos de DA basados en adición de ruido gaussiano, ajuste específico de ruido, adaptación de modelos generativos profundos, y ajuste de un meta-clasificador. Los métodos desarrollados se aplicaron en tres problemas: predicción de eventos en cáncer mediante RNA-Seq; predicción de la enfermedad rara Niemann-Pick Tipo-C a partir de datos metabolómicos; y clasificación del subtipo molecular de cáncer de mama utilizando la expresión génica del sistema inmune. De las investigaciones se concluye el potencial del DA para generar muestras que replican información biomédica y conducen a un aumento en el rendimiento de predicción.

Palabras Clave
Deep Learning
Data Augmentation
Bioinformatics
GAN
SMOTE
Noise Addition
Small Data
Imbalanced Data
Machine Learning
Artificial Intelligence
Acceso a la Publicación
Información de Publicación
Publicado
18/1/2023
Métricas de Impacto
Citas0
Factor de Impacto0
Cuartil
TBD
0