Conference paper
IoT and Sensors
IF: 0
Conference

Thermal comfort estimation using a neurocomputational model

J. Rodríguez-Alabarce, F. Ortega-Zamorano, J. M. Jerez, K. Ghoreishi, L. Franco

2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI)2016Vol. : 1-5
2
Citas
91
Visualizaciones
N/A
Descargas
N/A
Altmetric Score
1/11/2016
Publicado
Resumen

Thermal comfort conditions are important for the normal development of human tasks, and as such they have been analyzed in the context of several areas including human physiology, ergonomics, heating and cooling systems, architectural design, etc. In this work, we analyze the estimation of the thermal comfort perception by human subjects using a neurocomputational model based on the C-Mantec constructive neural network architecture, comparing it with two standard methods for modeling thermal comfort: Fanger and COMFA models. The results indicate a significative advantage of C-Mantec in terms of the predictive accuracy obtained, consider also that the flexibility of the neural model would permit the introduction of extra variables that can increase further the thermal comfort estimation.

Palabras Clave
Estimation
Mathematical model
Neural networks
Neurons
Temperature
Standards
Data models
Acceso a la Publicación
Información de Publicación
Páginas
1-5
Publicado
1/11/2016
Métricas de Impacto
Citas2
Factor de Impacto0
Cuartil
Conference
Visualizaciones91