Conference paper
Procesamiento del Lenguaje Natural
IF: 0
TBD

Clasificación de historias clínicas reales según CIE-10-ES para localización de neoplasias mediante modelos transformers

Alejandro Pascual-Mellado, Nuria Ribelles, José M. Jerez, Francisco J. Moreno-Barea

III Taller de Grupos de investigación españoles de IA en Biomedicina IABiomed (CAEPIA)2024Vol. : 680-685
1
Citas
21
Visualizaciones
N/A
Descargas
N/A
Altmetric Score
21/6/2024
Publicado
Resumen

Most of the clinical information stored in Spanish healthcare systems is found as unstructured text in electronic medical records. The automatic extraction of valuable information contained in these documents is a critical task. Valuable information for clinical analysis units in oncology includes the location of a patient's neoplasm. This location, included in the ICD-10-ES coding category, can be extracted from the texts using natural language processing. To this end, in this study we have developed methodologies based on the state of the art in natural language processing, the Transformer models. The results obtained show that the application of these models is of great help in this task. In particular, the RoBERTa-Base-Biomed model performed best, with a value of 0.946 in percentage of correct answers, 0.920 in precision, 0.898 in sensitivity and 0.908 in F1-score, showing great performance for most classes.

Palabras Clave
Natural Language Processing
Transformers
Electronic Health Records
CIE-10-ES
Spanish
Acceso a la Publicación
Información de Publicación
Páginas
680-685
Publicado
21/6/2024
Métricas de Impacto
Citas1
Factor de Impacto0
Cuartil
TBD
Visualizaciones21