Journal Article
Neural Networks
IF: 6.5
Q1 (42/197)

A convolutional autoencoder and a neural gas model based on Bregman divergences for hierarchical color quantization

José David Fernández-Rodríguez, Esteban J. Palomo, Jesús Benito-Picazo, Enrique Domínguez, Ezequiel López-Rubio, Francisco Ortega-Zamorano

Neurocomputing2023Vol. 544: Article 126288
0
Citas
0
Visualizaciones
N/A
Descargas
N/A
Altmetric Score
1/8/2023
Publicado
Autores
José David Fernández-Rodríguez

José David Fernández-Rodríguez
Correspondencia

Esteban J. Palomo

Esteban J. Palomo

Jesús Benito-Picazo

Jesús Benito-Picazo

Enrique Domínguez

Enrique Domínguez

Ezequiel López-Rubio

Ezequiel López-Rubio

Resumen

Color quantization (CQ) is one of the most common and important procedures to be performed on digital images. In this paper, a new approach to hierarchical color quantization is described, presenting a novel neural network architecture integrated by a convolutional autoencoder and a Growing Hierarchical Bregman Neural Gas (GHBNG). GHBNG is a CQ algorithm that allows the compression of an image by choosing a reduced set of the most representative colors to generate a high-quality reproduction of the original image. In the technique proposed here, an autoencoder is used to translate the image into a latent representation with higher per-pixel dimensionality but reduced resolution, and GHBNG is then used to quantize it. Experimental results confirm the performance of this technique and its suitability for tasks related to color quantization.

Palabras Clave
Color quantization
Convolutional autoencoder
Bregman divergences
Neural gas
Image compression
Deep learning
Acceso a la Publicación
Información de Publicación
Volumen
544
Páginas
Article 126288
Publicado
1/8/2023
Métricas de Impacto
Citas0
Factor de Impacto6.5
Cuartil
Q1 (42/197)
0